
Predicting City Statistics from Aerial Imagery

James Cooney
cooneyj@umich.edu

Sahil Farishta
sahilf@umich.edu

Rupal Nigam
rupaln@umich.edu

Shivam Sharma
sshivam@umich.edu

University of Michigan
Ann Arbor

Abstract

The project’s goal is to predict statistics about the area by
analyzing aerial images of cities. The project aims to pre-
dict statistics including, but not limited to, crime rates, un-
employment rates, and education level. The team plans to
accomplish this by analyzing features such as lighting, land
usage, streets, and other relevant features. The feature data
will be fed into a convolutional neural network that will
consider both the images with statistical data. The network
will be used to find correlations between features and the
statistics of interest and allow the team to determine what
properties of a city lead to different statistics.

1. Introduction

This project’s goal is to predict statistics about urban ar-
eas by analyzing aerial images. This will help determine
whether urban city designs and geography are a factor when
it comes to statistics about the area. These insights could
shape future design decisions when it comes to urban city
planning. If a correlation were to be found between mur-
der rates and number of alleys, or land usage and education
level, cities could be designed in a way to promote desir-
able statistics. We believe this is possible since we correlate
certain features in cities. Narrow alleyways are correlated
to crime while a large sprawling city with tall buildings has
more people than a small flat town. Many of these descrip-
tors can be extracted through images. Today, we have ac-
cess to plenty of satellite imagery of cities in both daylight
and night-time conditions. These images are processed to
find information about the city, such as land usage and street
layouts. Using this data, we believe it should be possible to
pick up on trends that similar cities have. This problem is
perfect to tackle using computer vision techniques since we
are able to extract the features of cities through the process-
ing of aerial images.

2. Contributions

Our project was a neural network designed to take in multi-
ple aerial images of cities and use them in order to generate
statistics for the input city. This was done by training the
neural network using sample images and datasets. These
images and data were provided via external sources. Our
contributions were extracting and processing the data, de-
signing the neural network, and training the algorithm. We
performed validation experiments on the network, finding
good hyperparameter values before producing test results
and comparing the outputs to the true values in order to de-
termine model performance.

3. Data

For this project, we used aerial imagery and statistical data
from 25 of the most populous 30 cities in Germany.

3.1. Aerial Photos

We used four images of each city. These included a satel-
lite daytime view, satellite night view, street map, and land
use map. The data from the land use map comes from the
Urban Atlas. This is a part of the European Union’s Coper-
nicus Program, an Earth observation initiative that monitors
atmosphere, oceans, land-use, and climate change from sev-
eral satellites. This program provides data from 2012 for
300 European cities in the form of shapefiles that can be
viewed with ARCmap. Land-use is divided into 30 cate-
gories ranging from wetlands and pastures to dense urban
usage. The other three views are all generated with GIS
data in ARCmap. This allows all four aerial photos to be
of the exact same area. Each of these four layers needs to
be loaded and aligned to ensure they all show the same land
area. Then the colors have to be manually added to the land-
use map. This ensures that each category of land will be the
same color across all cities used in the network. Finally,
all layers are exported as a png. Each photo is 1446 x 787
pixels and covers an area roughly 30 x 17 miles centered on
each chosen city.

1



Figure 1. Daytime satellite view of Munich

Figure 2. Land-use map of Munich from Urban Atlas

Figure 3. Nighttime satellite view of Munich

Figure 4. Street map view of Munich

3.2. Statistical Data

We found a database hosted by Eurostat, a directorate that
provides statistics to the European Union, that contains city
statistics. The database provides many options for query-
ing, including by city, year, and statistic. These statistics
include data for the largest 30 cities in Germany, which is a
superset of the cities we are concerned with in this project.
Some of the data available include education, living con-
ditions, and population. We will use these statistics as the
output from the neural net and treat them as the labels for

the network. We plan on using the statistics for population,
unemployment rate, percent of population who have com-
pleted college, number of murders and violent deaths, and
average size of households. We are getting the data from
the 2012 survey which matches the year our image data was
provided.

Figure 5. Education statistics for German Cities

3.3. Data Usage

Our network takes in the imagery and processes it, produc-
ing estimates for the 5 statistics we are measuring. The
output statistics are then compared with the true statistical
values provided by the dataset. Our team was concerned
the model would simply learn to identify the cities instead
of generalizing features within the city imagery. To com-
bat this, we split our data into 3 sets. 15 cities were used
for training, 5 images were used for validation, and 5 were
used for testing. The 5 validation images were used for de-
termining model robustness and hyperparameter tuning and
the network never trained on these images during the de-
sign stage. Once the network was fully designed and hy-
perparameters were selected, the model would then train on
the training and validation sets and evaluated on the test set.
Since the model had never seen the cities in the validation
and test sets, the model would not perform well on these
cities if it had simply learned to identify the city it was pre-
sented with. Thus we believe our system was able to gen-
eralize on features within the imagery in order to predict
statistics about the cities.

2



4. Methods

Our project consisted of taking the aerial images and the
data files and pre-processing them before feeding them into
the neural network. We checked the validation results of
the output of the model and adjusted the hyperparameters as
necessary. Finally, when the results were within the tolera-
ble range, the hyperparameters were finalized and the model
was run on the test data to create the predictions.

Figure 6. Pipeline for Project

4.1. Pre-processing

The land-use, daytime satellite, and street map images were
read in as RGB images, the night time satellite view was
read as grayscale. These four images were all stacked into a
single 10 channel image then each channel was normalized
to zero-mean and a standard deviation of 1 across the entire
data set. These normalized image layers were downscaled
to be 512 × 512 in order to have square images to operate
on. We also normalized the data by dividing each statistical
value by the maximum of each category. This was done in
order to ensure that all data lay between 0 and 1.

4.2. Neural Network

The neural network consists of 4 convolutional layers and 2
fully connected layers. Each convolutional layer consists of
a convolutional, a max pool, a batch norm, and a dropout,
followed by a ReLU activation function. The loss function
used was Mean Squared Error and we used the Adam Opti-
mizer with a learning rate of 1 × 10−3 and a weight decay
of 1× 10−5.

Figure 7. Convolutional Neural Network Architecture

Figure 8. Structure of Convolutional Layers

The first convolutional layer takes in a 10×512×512 image
and uses a kernel size of 16× 16 with a stride and padding
of 2×2. The first max pool layer uses a kernel size of 3×3
and a stride of 2× 2 with no padding. After the batch norm
is applied, a dropout is applied with probability of dropping
a node being 0.05. Finally the ReLU activation function is
applied at the end. This same batch norm, droupout, and
ReLU activation function end each convolutional layer.
The output of this layer is 16× 125× 125.

3



The second convolutional layer uses a kernel size of 9 × 9
with a stride and padding of 2 × 2. The second max pool
layer uses a kernel size of 3 × 3 and a stride of 2 × 2 with
no padding. The same batchnorm, droupout, and ReLU
activation is applied at the end. The output of this layer is
32× 30× 30.

The third convolutional layer uses a kernel size of
5 × 5 with a stride of 1 × 1 and no padding. The third
max pool layer uses a kernel size of 2 × 2 and a stride of
2× 2 with no padding. The same batchnorm, droupout, and
ReLU activation is applied at the end. The output of this
layer is 64× 13× 13.

The fourth and final convolutional layer uses a kernel
size of 5 × 5 with a stride of 1 × 1 and no padding. The
fourth max pool layer uses a kernel size of 3 × 3 and a
stride of 2 × 2 with no padding. The same batchnorm,
droupout, and ReLU activation is applied at the end. The
output of this layer is 64× 4× 4.

After this, the output is flattened and shaped into a
1x2048 vector that then is fed into the first fully connected
layer that outputs a 1x256 vector. This is then put through a
ReLU activation function before being fed into the second
fully connected layer that outputs a 1x5. These are the 5
statistical values that are used as the predictions by the
system.

The system was trained by splitting the 25 cities up
into 15 training cities, 5 validation cities, and 5 test cities.
Each epoch consisted of training on the training set with a
batch size of 1. This meant seeing each city in the training
set once per epoch. The validation phase consisted of run-
ning the network on the validation cities and determining
the loss based on the outputs and the true known values.
Again, a batch size of 1 used, so each image was seen once
during the validation process. Finally, during the testing
phase, each city was run through the network and the
outputs were printed out to a file. We then analyzed each
output file to determine the robustness of the model.

5. Experiments

To train the system, we ran the network on the 15 training
cities for 100 epochs, using the validation city set to select
hyperparameters. Once the hyperparameters were chosen,
the system was run for 100 epochs using a combined set
of the training and validation data. After 100 epochs, the
model was analyzed using the graph shown in Figure 9.
Since the validation loss was lowest at epoch 60, we then
retrained a model for 60 epochs and used output of the test
images as the final outputs for our project.

Figure 9. Training and Validation Loss for Model over 100 Epochs

6. Results
We analyzed the performance of our network by studying
various metrics. First, we looked at the normalized root
mean squared error between the true value and the predic-
tion. The normalized root mean squared is definied as fol-
lows:

NRMSE =

√
(xtrue − xprediction)2

xtrue
(1)

Normalizing the error by the true value allows us to com-
pare errors across the different statistics. Figure 10 displays
the NRMSE for each city. We can see that the network
clearly struggles with ‘Wuppertal’ and has the highest
NRMSE for that city. This could be because Wuppertal is
a smaller mountain city, which is distinct from the other
cities in the dataset.

Figure 10. Normalized root mean squared error for each test city

To ensure we weren’t introducing bias into the testing, we
made sure to pick test data from uniformly throughout the
training data state space. Figure 11 shows scatter density
plots of the training data points and the test data points. The
two subplots are the statistics with typically low values, and
high values - “household” statistics were omitted for this
plot because they have a very small variance.

4



Table 1. Test city CNN predictions, and true values
Higher-ed Household Murders Population Unemployment
True Predicted True Predicted True Predicted True Predicted True Predicted

Dresden 42,738.99 15,299.26 1.80 1.74 10.00 6.68 517,764.98 320,468.22 7.50 6.84
Dusseldorf 36,119.00 32,587.03 1.80 1.82 10.00 9.90 589,648.97 357,537.43 6.50 6.00
Hamburg 91,438.99 72,874.05 1.80 2.18 74.99 38.20 1,718,186.90 1,206,099.01 5.50 8.92
Mannheim 25,309.00 34,833.22 1.90 1.92 12.00 11.61 2,91,457.98 3,88,410.15 5.30 5.16
Wuppertal 17,738.99 22,015.50 2.00 1.10 6.00 9.38 3,42,570.00 1,60,241.60 8.90 3.75

Figure 11. Scatter density plot for test, and training data to en-
sure the test data was spread across the training data state space.
Lighter colors are denser regions.

We conducted a similar analysis to have a look at the distri-
bution of the test data predictions. From Figure 12 we can
see the distribution of the predicted statistics. Interestingly,
some of the predictions are very close (almost overlapping)
with test data. This leads us to believe that the CNN possi-
bly overfit the data slightly.

Taking a look at the NRMSE, we will try to compare our
model towards a random model. Since we normalize the
data from 0-1, an average random error would be 0.5 in this
range. Similarly, a random true value would be 0.5. Thus, a
random NRMSE would be:

NRMSErandom =

√
(0.5)2

0.5
= 1 (2)

Looking at our normalized root mean squared error for our
5 test cities as shown in Figure 10, we see that our model
did indeed perform better than a random model, with our
NRMSE values ranging from 0 to 0.65.

Finally, we took the data and calculated how many
standard deviations it was from the true value. This was
used to get a sense of how far off the predicted data was
from the true value based on how scattered each statistic

Figure 12. Scatter density plot for test predictions, and training
data shows some predictions were almost the same as training data
points. Lighter colors are denser regions.

was across the entire dataset. The results are seen in Table
2. As we can see, the majority of the data was within
1 standard deviation of the correct value. Additionally,
the only statistic that had results more than 2 standard
deviations away from the true value was household size.
This may come from the fact that household size has very
little variance across our datasets which means small errors
in household size are not penalized enough while the model
is being trained. This results in the data being off by a large
amount, even though to human eyes, 2.18 doesn’t seem too
different than 1.8.

7. Conclusion
Looking forward, we would like to expand our data collec-
tion to encompass more cities in order to improve learning
abilities. Having only 25 cities to use severely limited our
training data and the wide variance in city sizes made it dif-
ficult for the model to generalize. We would also like to
have more city features within the data collected, such as
population and building density maps and height maps for
the buildings. This would provide a 3-dimensional view of
the city to the model instead of relying only on the flat 2D
map. Additionally, we would like to expand more on the
land use statistics, so that we could identify specific build-

5



Table 2. Test city CNN predictions, and number of standard deviations from true values
Higher-ed Household Murders Population Unemployment
Predicted # Standard Deviations Off Predicted # Standard Deviations Off Predicted # Standard Deviations Off Predicted # Standard Deviations Off Predicted # Standard Deviations Off

Dresden 15,299.26 0.80 1.74 0.65 6.68 0.11 320,468.22 0.29 6.84 0.38
Dusseldorf 32,587.03 0.10 1.82 0.22 9.9 0.00 357,537.43 0.35 6 0.29
Hamburg 72,874.05 0.54 2.18 4.11 38.2 1.18 1,206,099.01 0.76 8.92 1.99
Mannheim 34,833.22 0.28 1.92 0.22 11.61 0.01 388,410.15 0.14 5.16 0.08
Wuppertal 22,015.50 0.12 1.1 9.72 9.38 0.11 160,241.60 0.27 3.75 3.00

ings within the city. This would allow the model to corre-
spond features such as universities to more educated people.
We would also like to include an activation map that visual-
izes what the model learns from each image and how these
features correspond to various statistics. This would allow
us to find potential flaws in the model and draw conclu-
sions. These conclusions could demonstrate what features
in a city lead to higher numbers of college graduates or a
lower number of violent crimes and could inspire changes
in future urban design and planning.

References
[1] Adrian Albert, Jasleen Kaur, and Marta C. González.

Using convolutional networks and satellite imagery to
identify patterns in urban environments at a large scale.
CoRR, abs/1704.02965, 2017.

[2] Copernicus. Urban atlas 2012. https://land.
copernicus.eu/local/urban-atlas/
urban-atlas-2012, 2012.

[3] European Commission. Eurostat. https:
//ec.europa.eu/eurostat/web/cities/
data/database, 2012.

[4] Wikipedia contributors. List of cities in germany
by population — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.
php?title=List_of_cities_in_Germany_
by_population&oldid=924101522, 2019.

6

https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012
https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012
https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012
https://ec.europa.eu/eurostat/web/cities/data/database
https://ec.europa.eu/eurostat/web/cities/data/database
https://ec.europa.eu/eurostat/web/cities/data/database
https://en.wikipedia.org/w/index.php?title=List_of_cities_in_Germany_by_population&oldid=924101522
https://en.wikipedia.org/w/index.php?title=List_of_cities_in_Germany_by_population&oldid=924101522
https://en.wikipedia.org/w/index.php?title=List_of_cities_in_Germany_by_population&oldid=924101522

